KAPITOLA 5

VLASTNOSTI SPOJITÝCH
A DERIVOVATELNÝCH FUNKCÍ

Pod slovem funkce budeme v této kapitole vždy rozumět reálnou nebo komplexní funkci jedné reálné proměnné, pokud nebude řečeno jinak.

5.1. Lokální vlastnosti

Následující věty jsou snadnými důsledky vět 3.7. a 3.10. Čtenář si může jejich důkaz provést za cvičení.

Věta 5.1. Je-li reálná nebo komplexní funkce f spojitá v bodě \(a \in \mathbb{R} \), pak existuje \(U_{\gamma}(a) \), na němž je f omezená. Analogicky pro jednostrannou spojitost.

Věta 5.2. Je-li reálná nebo komplexní funkce f spojitá v bodě \(a \in \mathbb{R} \), pak platí

1. je-li \(f(a) \neq 0 \), pak existuje \(U_{\gamma}(a) \), že \(|f(x)| \geq |f(a)|/2 > 0 \) na \(U_{\gamma}(a) \).
2. je-li \(f \) reálná, a \(f(a) > 0 \) (\(f(a) < 0 \)), pak existuje \(U_{\gamma}(a) \), že \(f(x) \geq f(a)/2 > 0 \) (\(f(x) \leq f(a)/2 < 0 \)) na \(U_{\gamma}(a) \).

Analogicky pro jednostrannou spojitost.

Definice 5.1. Řekneme, že funkce \(f \) je \(\text{neklesající (rostoucí)} \) v bodě \(a \in \mathbb{R} \), jestliže existuje \(U_{\gamma}(a) \) tak, že \(f(x) \leq f(a) \) (\(f(x) < f(a) \)) pro \(x \in U_{\gamma}^{-}(a) \) a \(f(x) \geq f(a) \) (\(f(x) > f(a) \)) pro \(x \in U_{\gamma}^{+}(a) \). Řekneme, že funkce \(f \) je \(\text{nerostoucí (klesající)} \) v bodě \(a \in \mathbb{R} \), jestliže existuje \(U_{\gamma}(a) \) tak, že \(f(x) \geq f(a) \) (\(f(x) > f(a) \)) pro \(x \in U_{\gamma}^{-}(a) \) a \(f(x) \leq f(a) \) (\(f(x) < f(a) \)) pro \(x \in U_{\gamma}^{+}(a) \). Řekneme, že funkce \(f \) má v bodě \(a \in \mathbb{R} \) \(\text{lokální maximum (lokální minimum)} \), jestliže existuje \(U^{*}(a) \) tak, že \(f(x) \leq f(a) \) (\(f(x) \geq f(a) \)) pro \(x \in U^{*}(a) \). Platí-li místo neostrých nerovností ostré,
mluvíme o \textit{ostřem lokálním maximu} (\textit{ostřem lokálním minimu}). Lokální maxima a minima (ostřá) se nazývají \textit{lokálními extrémy} (\textit{ostřými}).

\textbf{Příklad 5.1.} Funkce \(f(x) = \sin x, \ x \in \mathbb{R} \) má ostřá lokální maxima (minima) v bodech \(\pi/2 + 2k\pi \) (\(-\pi/2 + 2k\pi \)), \(k \) celé. V ostatních bodech je buď rostoucí nebo klesající.

\textbf{Věta 5.3.} Nechť funkce \(f \) má v bodě \(a \in \mathbb{R} \) derivaci (vlastní či nevlastní). Potom platí

1. je-li \(f'(a) > 0 \) (\(f'(a) < 0 \)), je \(f \) v bodě \(a \) rostoucí (klesající).
2. má-li \(f \) v bodě \(a \) lokální extrém, je \(f'(a) = 0 \).
3. je-li \(f \) v bodě \(a \) neklesající (nerostoucí), pak je \(f'(a) \geq 0 \) (\(f'(a) \leq 0 \)).

\textit{Důkaz.} 1) Buď \(f'(a) > 0 \). Podle věty 3.10. existuje \(U^*(a) \) tak, že \(\frac{f(x) - f(a)}{x - a} > 0 \) na \(U^*(a) \), a tedy \(f(x) - f(a) > 0 \) pro \(x - a > 0 \) a \(f(x) - f(a) < 0 \) pro \(x - a < 0 \), a \(f \) je proto v bodě \(a \) rostoucí. Případ \(f'(a) < 0 \) přenecháváme čtenáři za cvičení.

2) Nechť má \(f \) v bodě \(a \) například lokální maximum, tj. \(f(x) \leq f(a) \) pro \(x \in U^*(a) \). Potom ovšem je \(\frac{f(x) - f(a)}{x - a} \geq 0 \) (\(\leq 0 \)) pro \(x - a < 0 \) (\(> 0 \)). Z první nerovnosti ovšem dostaneme \(f'_-(a) \geq 0 \) a z druhé \(f'_+(a) \leq 0 \). Poněvadž \(f'(a) \) existuje, je \(0 \leq f'_-(a) = f'(a) = f'_+(a) \leq 0 \).

3) Poslední tvrzení dostaneme z prvního použitím obecné věty \(A \Rightarrow B \Leftrightarrow \text{non} \ B \Rightarrow A \): \(f \) neklesající \(\Rightarrow \text{non} (f \ \text{rostoucí}) \Rightarrow \text{non} f'(a) > 0 \Leftrightarrow f'(a) \leq 0 \).

\textit{Poznámka 5.1.} Věta udává postačující (ale nikoli nutné) podmínky pro to, aby funkce byla rostoucí (klesající) v bodě a nutnou (nikoli postačující) podmínku pro to, aby funkce, která má v daném bodě derivaci, měla v tomto bodě lokální extrém. Poslední tvrzení je nutná (a nikoli postačující) podmínka pro to, aby funkce byla v bodě a neklesající (nerostoucí).

\textbf{Příklad 5.2.} Funkce \(f(x) = x^3, \ x \in \mathbb{R} \) nemá v bodě \(0 \) extrém, přestože je \(f'(0) = 0 \). Je v tomto bodě rostoucí, i když není \(f'(0) > 0 \).

\textbf{5.2. Globální vlastnosti}

\textbf{Věta 5.4 (omezenost).} Je-li reálná nebo komplexní funkce \(f \) spojitá na omezeném uzavřeném intervalu \((a, b) \), \(a, b \in \mathbb{R} \), pak je na tomto intervalu omezená.
Důkaz. Kdyby f nebyla na \(\langle a, b \rangle \) omezená, pak by existovala posloupnost \(x_n \in \langle a, b \rangle, n \in \mathbb{N} \), že \(|f(x_n)| \geq n \). Posloupnost \(x_n \) je omezená, a proto z ní lze podle věty 2.13 vybrat konvergentní vybranou posloupnost \(x_{k_n}, x_{k_n} \to x_0 \in \mathbb{R} \) pro \(n \to \infty \). Podle věty 2.9 je \(x_0 \in \langle a, b \rangle \). Potom ovšem f není omezená na žádném okolí bodu \(x_0 \), a tedy podle věty 5.1 nemůže být spojitá v bodě \(x_0 \), a tedy ani na intervalu \(\langle a, b \rangle \).

Následující příklady ukazují, že na neomezeném nebo neuzavřeném intervalu věta obecně neplatí. Stačí také nespojitost v jednom bodě intervalu, aby funkce mohla být neomezená.

Příklad 5.3. Funkce \(f(x) = 1/x, x \in (0,1) \) je na \((0,1) \) spojitá, ale není tam omezená. Podobně funkce \(g(x) = x \) na intervalu \((1, \infty) \).

Příklad 5.4. Funkce
\[
f(x) = \begin{cases}
1/x & \text{pro } x \in (0,1), \\
0 & \text{pro } x = 0
\end{cases}
\]
je na \((0,1) \) nespojitá pouze v bodě 0 a je tam neomezená.

Tato věta se dá zobecnit následovně:

Věta 5.4'. Nechť \(f \) je spojitá na intervalu \(J \) a má vlastní jednostranné limity v jeho krajních bodech. Pak je \(f \) na \(J \) omezená.

Důkaz. Z existence vlastních limit v krajních bodech plyne omezenost \(f \) na jistých okolích \(U^+ \) a \(U^- \) těchto bodů. Na \(J \setminus (U^+ \cup U^-) \) (což je omezený uzavřený interval) je \(f \) spojitá a podle věty 5.4. omezená. Potom je ovšem omezená na \(J = (J \setminus (U^+ \cup U^-)) \cup U^+ \cup U^- \).

Definice 5.2. Nechť \(f \) je reálná funkce, \(M \subset \mathcal{D}_f, M \neq \emptyset \). Označíme
\[
\sup_M f = \sup \{f(x); x \in M\} \\
\inf_M f = \inf \{f(x); x \in M\}
\]
Řekneme, že funkce \(f \) nabývá na \(M \) svého maxima (minima), má-li množina \(f(M) \) maximum (minimum), tj. existuje-li \(x_0 \in M \) tak, že
f(x_0) \geq f(x) \ (f(x_0) \leq f(x)) \text{ pro všechna } x \in M. \text{ Číslo } f(x_0) \text{ pak nazýváme maximem (minimem) funkce } f \text{ na množině } M \text{ a označujeme jej } \max_M f \text{ (min } M f).\footnote{Supremum resp. infimum funkce jsme již definovali v kapitole 3. Uvádímme je zde znovu pro pohodlí čtenáře.}

Poznámka 5.2. Každá reálná funkce má na } M \text{ supremum i infimum } (\in \mathbb{R}^*), \text{ obecně tam ovšem nemusí mít maximum a minimum. Dále je zřejmé, že } \max_M f = \sup_M f, \ \min_M f = \inf_M f, \text{ pokud maximum resp. minimum existuje.}

Příklad 5.5. Pro funkci } f(x) = \arctg x, \ x \in \mathbb{R} \text{ je } \sup_{\mathbb{R}} f = \pi/2, \ \inf_{\mathbb{R}} f = -\pi/2, \aleť maximum ani minimum na } \mathbb{R} \text{ tato funkce nemá (je } -\pi/2 < \arctg x < \pi/2 \text{ pro } x \in \mathbb{R}).

Užitečné je si uvědomit platnost následujícího tvrzení, jehož důkaz je zřejmý:

Věta 5.5. Nabývá-li funkce } f \text{ maxima (minima) na intervalu } J \text{ v bodě } x_0 \in J, \text{ pak je } x_0 \text{ buď krajní bod intervalu } J, \text{ nebo je to takový vnitřní bod intervalu } J, \text{ v němž má } f \text{ lokální maximum (minimum).}

Věta 5.6 (o nabývání maxima a minima). Nechť reálná funkce } f \text{ je spojitá na omezeném uzavřeném intervalu } \langle a, b \rangle, \ a, b \in \mathbb{R}. \text{ Pak } f \text{ nabývá na } \langle a, b \rangle \text{ svého maxima i minima.}

Důkaz. Podle věty 5.4. je } f \text{ na } \langle a, b \rangle \text{ omezená, a tedy } G = \sup_{\langle a, b \rangle} f \in \mathbb{R}. \text{ Podle definice suprema existuje posloupnost } x_n \in \langle a, b \rangle, \ n \in \mathbb{N}, \text{ že } G - 1/n < f(x_n) \leq G, \text{ a tedy } \lim_{n \to \infty} f(x_n) = G. \text{ Z posloupnosti } x_n \můžeme vybrat konvergentní vybranou posloupnost } x_{k_n} \to x_0 \in \langle a, b \rangle. \text{ Díky spojitosti } f \text{ je podle Heineho věty } \lim_{n \to \infty} f(x_{k_n}) = f(x_0). \text{ Na druhé straně je } \lim_{n \to \infty} f(x_{k_n}) = \lim_{n \to \infty} f(x_n) = G, \text{ a tedy } f(x_0) = G \text{ a } f(x_0) = \max_{\langle a, b \rangle} f. \text{ Pro minimum se důkaz provede analogicky, anebo lze užít již dokázané tvrzení o maximu na funkcii } \tilde{f} = -f (\text{zřejmě je } \max_{\langle a, b \rangle} \tilde{f} = -\min_{\langle a, b \rangle} f).
pro neuzavřený interval tvrzení věty obecně neplatí. Viz následující příklady.

Příklad 5.6. Funkce \(f(x) = \text{sgn} \, x, \ x \in \mathbb{R} \) nabývá na \(\mathbb{R} \) maxima (= 1) ve všech bodech \(x > 0 \) a minima (= −1) ve všech bodech \(x < 0 \).

Příklad 5.7. Funkce \(f(x) = x, \ x \in \mathbb{R} \), nenabývá ani maxima ani minima na žádném otevřeném intervalu \((a, b) \), \(a, b \in \mathbb{R}^* \), \(a < b \).

Příklad 5.8. Funkce

\[
f(x) = \begin{cases}
 x & x \in (-1, 1), \\
 0 & x = -1, 1
\end{cases}
\]

nenabývá na \((-1, 1) \) ani maxima, ani minima (není na \((-1, 1) \) spojitá). Zřejmě je \(\sup_{(-1,1)} f = 1, \ \inf_{(-1,1)} f = -1 \).

Pro úplnost uvedeme větu, kterou jsme dokázali a použili v kapitole 3. (věta 3.24):

Věta 5.7 (o nabývání všech mezihodnot). Nechť \(f \) je reálná funkce spojitá na intervalu \((a, b) \), \(a, b \in \mathbb{R} \). Potom \(f \) nabývá na \((a, b) \) všech hodnot mezi čísly \(f(a) \) a \(f(b) \).

Důsledek. Nechť \(f \) je reálná funkce definovaná a spojitá na intervalu \(I \). Potom \(f(I) \) je opět interval. Jeho koncovými body jsou body \(\inf_I f \) a \(\sup_I f \). Tyto koncové body patří do něj právě tehdy, nabývá-li \(f \) na \(I \) minima resp. maxima.

Důkaz. Pro omezený uzavřený interval \(I \) to plyne okamžitě z vět 5.6. a 5.7. V obecném případě je předně \(f(I) \subset (\inf_I f, \sup_I f) \). Jsou-li \(x_n, y_n \in I \) takové, že \(f(x_n) \to \inf_I f \), \(f(y_n) \to \sup_I f \) pro \(n \to \infty \), pak podle věty 5.7. musí \(f(I) \) obsahovat celý interval \((f(x_n), f(y_n)) \), a tedy i otevřený interval \((\inf_I f, \sup_I f) \). Zbytek je zřejmý.

Definice 5.3. Řekneme, že reálná nebo komplexní funkce \(f \) je stejnometně spojitá na intervalu \(I \), jestliže ke každému \(\varepsilon > 0 \) existuje \(\delta > 0 \) tak, že pro každé dva body \(x', x'' \in I \) takové, že \(|x' - x''| < \delta \) je \(|f(x') - f(x'')| < \varepsilon \).