CONTENTS

Preface 7

I. Variational Methods 9
 A. Introduction 9
 B. Linear harmonic oscillator with a Gaussian test function 11
 C. The first excited state of a linear harmonic oscillator 14
 D. Linear harmonic oscillator with test function $1/(1 + x^2)$ 16
 E. Hydrogen atom with a Gaussian test function 18
 F. Particle in a $-r^{-3/2}$ potential 21
 G. No matrix element, no fun 24
 H. Quantum rotor with an $A \cos^2 \phi$ perturbation 26

II. Time-Independent Perturbation Theory 31
 A. Introduction 31
 B. Linear harmonic oscillator with an Ax^6 potential 32
 C. Square well potential with an Ax^2 perturbation 34
 D. Linear harmonic oscillator with a modified potential 35
 E. Cubic anharmonic oscillator 39
 F. Particle in a periodic box and with a step potential 41
 G. Particle in a periodically repeated box with a Dirac δ perturbation 43
 H. The double-well quadratic potential 48
 I. A ramp-like infinite square well 50
 J. Don’t step on the pin! 53
 K. A pothole-like infinite square well 55
 L. The bound state in an external electric field 56
 M. Linear harmonic oscillator with an Ax^2y^2 perturbation 59
 N. Hydrogen atom in an electric field. The Stark effect in hydrogen 64
O. The perturbed Hamiltonian matrix for degenerate states 69
P. Dipole in an electric field 76

III. Time-Dependent Problems 85
A. Introduction 85
B. β-decay of tritium 86
C. A charged particle in a 3D box with an electric field 93
D. Hydrogen atom in a time-dependent electric field 105
E. Time-dependent force acting on a linear harmonic oscillator 108
F. Time-dependent electric field 113
G. Time evolution of a system with coupled states 117

IV. Angular Momentum 125
A. Introduction 125
B. Expectation values of \hat{L}_x and \hat{L}_x^2 operators 126
C. Measurement of spin along a rotated axis 128
D. Angular momentum after passing through a Stern-Gerlach apparatus 131
E. Eigenstates of \hat{L}_x 135
F. Two non-interacting spins 137
G. Spin-orbit interaction 139
H. Coupling of momenta 140
I. Lowering operators 144
J. Spin-spin Hamiltonian 145
K. Matrix representation of the spin-spin Hamiltonian 147
L. Zeeman effect on hyperfine splitting in hydrogen 149

V. Miscellaneous 155
A. Introduction 155
B. Lower-bounded spectrum of a linear harmonic oscillator 155
C. Superposition of states of a linear harmonic oscillator 157
D. The uncertainty principle 159
E. Ehrenfest’s theorem 160
F. The virial theorem 162
G. Detection of (in)distinguishable particles 164
H. The polarization density matrix in 2 × 2 space 171
I. Helium ground state energy I: Variational principle 175
J. Helium ground state energy II: First-order perturbation theory 182
K. Optical selection rules 186
L. Rotational selection rules 193
M. The Hubbard model 203
N. Analytic properties of Bloch functions 212

Appendix A. Simple Quantum Systems 217
 1. Quantum harmonic oscillator 217
 a. Hamiltonian and eigenstates 217
 b. Ladder operators 218
 c. Integrals 219
 d. Gaussian integrals 221
 2. Particle in an infinitely deep square well potential 223
 a. Hamiltonian and eigenstates 223
 b. Integrals 224
 3. Quantum rotor 228
 a. Hamiltonian and eigenstates 228
 b. Integrals 229
 4. 2D quantum rotor 230
 a. Hamiltonian and eigenstates 230
 b. Integrals 231
 5. Hydrogen atom 233
a. Integrals 234

Appendix B. Gamma Function 235

Appendix C. Physical Constants 236

Appendix D. Conversion Factors 239

Index 241

References 245