
Chapter 2

Physical contents of Dirac equation:
preliminary discussion

As we have noted in the preceding chapter, the prime motivation for finding an alternative to the
Klein–Gordon equation was the requirement that the probability defined in terms of a quantum
mechanical wave function should be positive. So, let us now examine this problem for the Dirac
equation; for convenience, we return to the natural units. Eq. (1.23) then reads

𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝑖𝑖𝛼𝛼 · Δ𝜓𝜓 + 𝛽𝛽𝛽𝛽𝛽𝛽 (2.1)

(we will use the standard representation (1.32) in what follows). Let us recall that 𝜓𝜓 is a
four-component wave function that is conventionally written as a column

𝜓𝜓(𝑥𝑥) =
����
�

𝜓𝜓1(𝑥𝑥)
𝜓𝜓2(𝑥𝑥)
𝜓𝜓3(𝑥𝑥)
𝜓𝜓4(𝑥𝑥)

����
�
. (2.2)

Upon Hermitian conjugation of Eq. (2.1) one has

−𝑖𝑖 𝜕𝜕𝜕𝜕
†

𝜕𝜕𝜕𝜕
= 𝑖𝑖 Δ𝜓𝜓† 𝛼𝛼 + 𝑚𝑚𝑚𝑚†𝛽𝛽 𝛽 (2.3)

where 𝜓𝜓† = (𝜓𝜓∗
1,𝜓𝜓

∗
2,𝜓𝜓

∗
3,𝜓𝜓

∗
4), and we have utilized the hermiticity property (1.27) of 𝛼𝛼 and 𝛽𝛽.

Multiplying Eq. (2.1) by 𝜓𝜓† from the left and (2.3) by 𝜓𝜓 from the right, and taking then the
difference of the two equations, one gets immediately

𝜕𝜕

𝜕𝜕𝜕𝜕
(𝜓𝜓†𝜓𝜓) + Δ(𝜓𝜓† 𝛼𝛼𝛼𝛼) = 0 , (2.4)

which is the anticipated continuity equation. Thus we may identify the probability density and
the probability current as

𝜌𝜌Dirac = 𝜓𝜓†𝜓𝜓𝜓  𝑗𝑗Dirac = 𝜓𝜓† 𝛼𝛼𝛼𝛼𝛼  (2.5)
The positivity of the 𝜌𝜌Dirac is obvious, since

𝜓𝜓†𝜓𝜓 = |𝜓𝜓1 |2 + |𝜓𝜓2 |2 + |𝜓𝜓3 |2 + |𝜓𝜓4 |2 . (2.6)

This is an expected result, due to the fact that the Dirac equation (2.1) is, in a sense, “square root
of Klein–Gordon equation”; more precisely, it is an evolution equation of the 1st order in time,
having the form

𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐻𝐻 𝐻𝐻𝐻  (2.7)
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where 𝐻𝐻 is the Dirac Hamiltonian

𝐻𝐻 = −𝑖𝑖𝛼𝛼 · Δ+ 𝛽𝛽𝛽𝛽 𝛽 (2.8)

Thus, the time evolution is generated by an operator of energy, as it should be, in accordance
with the general principles of quantum theory.

A next issue is the angular momentum. Let us start with orbital angular momentum,
defined in the standard way as 𝐿𝐿 = 𝑥𝑥 × 𝑝𝑝, where 𝑝𝑝 is the (linear) momentum 𝑝𝑝 = −𝑖𝑖 Δ.
As we know, 𝐿𝐿 commutes with the non-relativistic Hamiltonian in the Schrödinger equation
(1.4). For the Dirac Hamiltonian (2.8) one gets, employing the canonical commutation relation
[𝑥𝑥 𝑗𝑗 , 𝑝𝑝𝑘𝑘 ] = 𝑖𝑖𝑖𝑖 𝑗𝑗 𝑗𝑗 ,

[𝐻𝐻𝐻 𝐿𝐿] = −𝑖𝑖( 𝛼𝛼 × 𝑝𝑝) . (2.9)

Let us remark that the vector product in (2.9) is defined formally as usual, i.e.

( 𝛼𝛼 × 𝑝𝑝) 𝑗𝑗 = 𝜀𝜀 𝑗𝑗𝑗𝑗𝑗𝑗𝛼𝛼𝑘𝑘 𝑝𝑝𝑙𝑙 .

So, apparently, there is something missing, since any decent angular momentum should be an
integral of motion for the free particle, i.e. the corresponding operator should commute with the
Hamiltonian. In other words, the fact that [𝐻𝐻𝐻 𝐿𝐿] ≠ 0 is a hint that we are on the right track
towards the electron spin. A good candidate for such an additional ingredient of the full angular
momentum is guessed quite easily. Let us consider the 4 × 4 matrices

𝑆𝑆 =
1
2
Σ , Σ =

(𝜎𝜎 0
0 𝜎𝜎

)
, (2.10)

and recall that the Pauli matrices have the commutation relations

[𝜎𝜎𝑗𝑗 , 𝜎𝜎𝑘𝑘 ] = 2𝑖𝑖𝑖𝑖 𝑗𝑗 𝑗𝑗𝑗𝑗𝜎𝜎𝑙𝑙 . (2.11)

This means that the matrices 𝑆𝑆 defined by (2.10) satisfy

[𝑆𝑆 𝑗𝑗 , 𝑆𝑆𝑘𝑘 ] = 𝑖𝑖𝑖𝑖 𝑗𝑗 𝑗𝑗𝑗𝑗𝑆𝑆𝑙𝑙 , (2.12)

which, of course, is a set of commutation relations for components of an angular momentum.
Needless to say, the matrices 𝑆𝑆 possess eigenvalues ±1/2 (because (𝜎𝜎𝑗𝑗 )2 = 1 for 𝑗𝑗 = 1, 2, 3).
Now we may evaluate the commutator [𝐻𝐻𝐻 𝑆𝑆]. Clearly, 𝑆𝑆 commutes with the diagonal matrix 𝛽𝛽
(see (1.32)). Concerning the commutator involving 𝛼𝛼, one gets first

[𝛼𝛼𝑗𝑗 , Σ𝑘𝑘 ] =
(

0 2𝑖𝑖𝑖𝑖 𝑗𝑗 𝑗𝑗𝑗𝑗𝜎𝜎𝑙𝑙

2𝑖𝑖𝑖𝑖 𝑗𝑗 𝑗𝑗𝑗𝑗𝜎𝜎𝑙𝑙 0

)
,

so that
[𝐻𝐻𝐻 Σ𝑘𝑘 ] = 2𝑖𝑖( 𝛼𝛼 × 𝑝𝑝)𝑘𝑘 . (2.13)

Summarizing the results of our simple algebraic exercise, we have

[𝐻𝐻𝐻 𝐿𝐿] = −𝑖𝑖( 𝛼𝛼 × 𝑝𝑝) ,
[𝐻𝐻𝐻 𝑆𝑆] = 𝑖𝑖( 𝛼𝛼 × 𝑝𝑝) ,

(2.14)

and thus
[𝐻𝐻𝐻 𝐽𝐽] = 0 , (2.15)
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with
𝐽𝐽 = 𝐿𝐿 + 𝑆𝑆 𝑆 (2.16)

Thus, in such a straightforward manner we have recovered the electron spin as a part of the
conserved total angular momentum (2.16).

Let us now recall the problem of negative energy solutions of the Klein–Gordon equation,
mentioned in the preceding chapter (cf. (1.12)). One may wonder whether the Dirac equation
suffers an analogous difficulty. For clarifying this point, we are going to consider the solution
of Eq. (2.1) in the form of a plane wave involving the usual factor exp

[−𝑖𝑖(𝐸𝐸𝐸𝐸 − 𝑝𝑝 · 𝑥𝑥)] . To make
our discussion as simple as possible, we will restrict ourselves to the case of a particle at rest,
i.e. set 𝑝𝑝 = 0. Eq. (2.1) is then reduced to

𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝛽𝛽𝛽𝛽𝛽𝛽𝛽  (2.17)

Taking into account the block diagonal structure of the matrix 𝛽𝛽 ((1.32), it is useful to split the
𝜓𝜓 as

𝜓𝜓 =

(
𝜑𝜑
𝜒𝜒

)
, (2.18)

where 𝜑𝜑 and 𝜒𝜒 are two-component column vectors. Eq. (2.17) is then recast as

𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑚𝑚𝑚𝑚𝑚  (2.19)

𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝑚𝑚𝑚𝑚𝑚  (2.20)

Thus, two linearly independent solutions of Eq. (2.19) may be written e.g. as

𝜑𝜑(1) = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

(
1
0

)
, 𝜑𝜑(2) = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

(
0
1

)
, (2.21)

and similarly for (2.20),

𝜒𝜒(1) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

(
1
0

)
, 𝜒𝜒(2) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

(
0
1

)
. (2.22)

In this way, we obtain a set of four independent solutions of Eq. (2.1)

𝜓𝜓(1) = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖
����
�

1
0
0
0

����
�
, 𝜓𝜓(2) = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

����
�

0
1
0
0

����
�
, 𝜓𝜓(3) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

����
�

0
0
1
0

����
�
, 𝜓𝜓(4) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

����
�

0
0
0
1

����
�
. (2.23)

Obviously, 𝜓𝜓(1) and 𝜓𝜓(2) correspond to the positive rest energy 𝐸𝐸 = 𝑚𝑚, while 𝜓𝜓(3) and 𝜓𝜓(4)
carry negative energy 𝐸𝐸 = −𝑚𝑚 (they are also characterized by the two possible spin projections
to the third axis, up and down (±1/2)). It is interesting to notice that in the considered case,
the existence of the negative energy solutions is a consequence of the specific structure of the
matrix 𝛽𝛽. If 𝛽𝛽 were 4 × 4 unit matrix, we would have only a solution with positive energy. But,
alas, 𝛽𝛽 can never be the unit matrix because of the required anticommutation relations (1.26).
As we have already noted in the preceding chapter, the appearance of negative energy solutions
is a generic feature of the equations of relativistic quantum mechanics. We will discuss the
plane-wave solutions of Dirac equation in detail later on.

The last topic that we are going to discuss here is a derivation of the spin magnetic
moment of the electron. Soon after the birth of relativistic quantum mechanics this was indeed
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