
Kapitola 24

Temperované distribuce a
jejich integrální
transformace

Shrnutí kapitoly: Tato kapitola se věnuje rozšíření integrálních transformací
na distribuce. Nejprve si vhodně zúžíme třídu distribucí, na které budeme praco-
vat, na tak zvané „temperované distribuce, což jsou spojité lineární funkcionály
nad Schwartzovým prostorem. Poté, co se seznámíme se základními vlastnostmi
temperovaných distribucí, si pro ně zavedeme Fourierovu transformaci. Motivací
nám bude případ regulárních distribucí. Vysvětlíme si zavedení konvoluce distri-
bucí a dokážeme si, jak na ni působí Fourierova transformace. Pomocí vhodných
konvolucí si zavedeme derivace libovolného (tedy i komplexního) řádu a spočteme
si Fourierovu transformaci vybraných homogenních distribucí. Rozšíříme si Fou-
rierovu transformaci i na jistý typ distribucí. Pak se budeme věnovat radiálně
symetrickým distribucím v RN . Ukážeme si výpočet Fourierovy transformace pro
jistou třídu radiálně symetrických funkcí a poté si spočteme transformaci holo-
morfní třídy distribucí odpovídající rozšíření funkcí |x|λ. Na závěr si zavedeme
pro vhodnou třídu distribucí i Laplaceovu transformaci. Hlavním výsledkem bude
charakterizace Laplaceova obrazu těchto distribucí.

V následujícím textu, zejména pak v Sekci 24.3, se nám bude hodit pojem okolí
v obecnějším smyslu.

Definice 24.0.1 (Okolí množiny). Nechť A ⊂ RN . Pak jejím okolím nazýváme
každou množinu V ⊂ RN takovou, že pro ni existuje otevřená množina U ⊂ RN

splňující A ⊂ U ⊂ V .

Poznámka 24.0.2. (i) Definice se dá interpretovat tak, že okolím je zmíněná
množina U a podle libosti k ní můžeme cokoliv přidávat.
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(ii) Je přirozené porovnat naši novou definici pro případ jednobodové množiny
s definicí, kterou jsme používali doposud. Tedy s okolími v podobě neprázdné
otevřené koule. Uvědomme si, že jsme se vždy nacházeli v situaci (ať už jsme měli
zajistit splnění nějakého předpokladu, nebo naopak šlo o závěr nějaké věty), že
existuje okolí bodu, kde platí nejaký výrok a vně tohoto okolí platnost výroku není
podstatná. Zde je jedno, kterou z definic okolí používáme. Skutečně, pokud výrok
platí na okolí ve tvaru koule, pak za množiny U a V v naší nové definici můžeme
položit zmíněnou kouli. Pokud by výsledek platil v novém smyslu, díky otevřenosti
množiny U můžeme zkonstruovat požadovanou otevřenou kouli centrovanou ve
zkoumaném bodě a ležící v U .

24.1 Prostor temperovaných distribucí

V oddíle věnovaném distribucím s kompaktním nosičem jsme se setkali s jevem,
kdy při přechodu ke vhodné podmnožině distribucí můžeme rozšířit testovací pro-
stor (u distribucí s kompaktním nosičem je možné testovat funkcemi z C∞(Ω)).
Uvedeného principu se přidržíme a temperované distribuce zavedeme jako pod-
třídu distribucí, které je možné testovat funkcemi ze Schwartzova prostoru. To ale
znamená, že pracujeme pouze s případem Ω = RN .
Se Schwartzovým prostorem a s jeho základními vlastnostmi jsme se setkali

v kapitole věnované Fourierově transformaci (v Kapitole 21 čtvrtého dílu skript).
Schwartzův prostor S(RN ) jsme zavedli jako množinu všech funkcí f ∈ C∞(RN ),
které splňují

∥f∥α,β := ∥xαDβf∥L∞(RN ) < ∞ pro všechna α, β ∈ (N0)
N .

Konvergenci posloupnosti {fk}∞k=1 ⊂ S(RN ) k funkci f ve Schwartzově prostoru
jsme zavedli podmínkou

fk
S(RN )→ f ⇐⇒ ∥fk − f∥α,β

k→∞→ 0 pro všechna α, β ∈ (N0)
N .

Zároveň jsme si ukázali, že pokles funkcí ze Schwartzova prostoru charakteri-
zují také podmínky (každé z nich také odpovídá jistá charakterizace konvergence
na S(RN ))

∥|x||α|Dβf∥L∞(RN ) < ∞ pro všechna α, β ∈ (N0)
N ,

∥(1 + |x|)|α|Dβf∥L∞(RN ) < ∞ pro všechna α, β ∈ (N0)
N

a
∥(1 + |x|2)|α|Dβf∥L∞(RN ) < ∞ pro všechna α, β ∈ (N0)

N .

Zejména poslední podmínka nás inspiruje k pohledu na konvergenci v S(RN ), který
pro nás bude výhodný při určování řádu distribuce.
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Definice 24.1.1 (Prostor Sp(RN )). Nechť p ∈ N0. Pro každé φ ∈ S(RN ) defi-
nujme jeho normu

∥φ∥Sp(RN ) := sup
x∈RN

α∈(N0)
N ,|α|≤p

(1 + |x|2)p|Dαφ(x)|.

Dále definujme množinu
Sp(RN ) := S(RN ),

kde uzávěr bereme v prostoru Cp(RN ) vzhledem k normě φ → ∥φ∥Sp(RN ). Navíc
pro {φk}∞k=1 ⊂ Sp(RN ) zavádíme na prostoru Sp(RN ) konvergenci

φk
Sp(RN )→ 0

def⇐⇒ ∥φk∥Sp(RN ) → 0

a

φk
Sp(RN )→ φ

def⇐⇒ φk − φ
Sp(RN )→ 0.

Poznámka 24.1.2. (i) Pro φ ∈ S(RN ) a každé p ∈ N, p > 2 platí (případy
p = 0, 1, 2 jsou níže vypsány explicitně)

∥φ∥S0(RN ) ≤ ∥φ∥S1(RN ) ≤ ∥φ∥S2(RN ) ≤ · · · ≤ ∥φ∥Sp(RN ) ≤ ∥φ∥Sp+1(RN ) ≤ . . . .

a
S(RN ) ⊂ Sp+1(RN ) ⊂ Sp(RN ) ⊂ · · · ⊂ S2(RN ) ⊂ S1(RN ) ⊂ S0(RN ).

(ii) Pro posloupnost {φk}∞k=1 ⊂ S(RN ) je výrok φk
S(RN )→ 0 ekvivalentní tomu, že

pro každé p ∈ N0 platí φk
Sp(RN )→ 0.

Pomocí prostorů Sp(RN ) je možné prostor S(RN ) dokonce charakterizovat.

Tvrzení 24.1.3 (O charakterizaci prostorů Sp(RN )). Pro každé p ∈ N0 platí

Sp(RN ) = {φ ∈ Cp(RN ) : (1 + |x|2)pDαφ(x)
|x|→∞→ 0 kdykoliv |α| ≤ p}.

Dále platí
S(RN ) =

⋂
p∈N0

Sp(RN ).

Důkaz. Dokažme množinovou inkluzi „⊂ z první rovnosti. Nechť φ ∈ Sp(RN ) a

posloupnost {φk}∞k=1 ⊂ S(RN ) splňuje φk
Sp(RN )→ φ. Ke zvolenému ε > 0 proto

existuje k0 ∈ N takové, že

(1 + |x|2)p|Dαφk(x)−Dαφ(x)| < ε pro všechna x ∈ RN , k ≥ k0 a |α| ≤ p.

Navíc, protože φk0
∈ S(RN ), platí pro všechna x ∈ RN a |α| ≤ p (následující

odhad sice obecně není stejnoměrný v α, ale pracujeme jen s konečným počtem
multiindexů)

(1 + |x|2)p|Dαφk0(x)| ≤
1

1 + |x|2
(1 + |x|2)p+1|Dαφk0(x)| ≤

C

1 + |x|2
.


