Kapitola 24

Temperované distribuce a
jejich integralni
transformace

Shrnuti kapitoly: Tato kapitola se vénuje rozsiteni integralnich transformaci
na distribuce. Nejprve si vhodné zuzZime tridu distribuct, na které budeme praco-
vat, na tak zvané ,temperované distribuce®, coZ jsou spojité linedrni funkciondly
nad Schwartzovym prostorem. Poté, co se sezndmime se zdkladnimi vlastnostmi
temperovanych distribuct, si pro né zavedeme Fourierovu transformaci. Motivaci
ndam bude pripad requldrnich distribuci. Vysvétlime si zavedeni konvoluce distri-
buct a dokdzeme si, jak na mi pusobi Fourierova transformace. Pomoci vhodngch
konvoluci si zavedeme derivace libovolného (tedy i komplexniho) fddu a spocteme
st Fourierovu transformaci vybranych homogennich distribuci. Rozsirime si Fou-
rierovu transformaci i na jisty typ distribuci. Pak se budeme vénovat radidlné
symetrickym distribucim v RY. UkdZeme si vijpocet Fourierovy transformace pro
jistou tridu radidlné symetrickych funkci a poté si spocteme transformaci holo-
morfni tridy distribuci odpovidajici rozsireni funkci |z|. Na zdvér si zavedeme
pro vhodnou tridu distribuct i Laplaceovu transformaci. Hlavnim visledkem bude
charakterizace Laplaceova obrazu téchto distribuci.

V nasledujicim textu, zejména pak v Sekci 24.3, se ndm bude hodit pojem okol?
v obecnéjsim smyslu.

Definice 24.0.1 (Okoli mnoziny). Nechf A C RY. Pak jejim okolim nazyvéime
kazdou mnozinu V C RY takovou, Ze pro ni existuje oteviend mnozina U C RV
spliujici A C U C V.

Poznamka 24.0.2. (i) Definice se da interpretovat tak, ze okolim je zminéna
mnozina U a podle libosti k ni mtizeme cokoliv pridavat.
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(ii) Je pfirozené porovnat nasi novou definici pro p¥ipad jednobodové mnoZiny
s definici, kterou jsme pouzivali doposud. Tedy s okolimi v podobé neprazdné
oteviené koule. Uvédomme si, Ze jsme se vzdy nachézeli v situaci (atf uz jsme méli
zajistit splnéni néjakého predpokladu, nebo naopak Slo o zévér néjaké véty), ze
existuje okoli bodu, kde plati nejaky vyrok a vné tohoto okoli platnost vyroku neni
podstatna. Zde je jedno, kterou z definic okoli pouzivame. Skuteéné, pokud vyrok
plati na okoli ve tvaru koule, pak za mnoziny U a V v nasi nové definici mizeme
polozit zminénou kouli. Pokud by vysledek platil v novém smyslu, diky otevienosti
mnoziny U muzeme zkonstruovat pozadovanou otevienou kouli centrovanou ve
zkoumaném bodé a lezici v U.

24.1 Prostor temperovanych distribuci

V oddile vénovaném distribucim s kompaktnim nosi¢em jsme se setkali s jevem,
kdy pfi pfechodu ke vhodné podmnoziné distribuci miazeme rozsitit testovaci pro-
stor (u distribuci s kompaktnim nosi¢em je mozné testovat funkcemi z C'*°(12)).
Uvedeného principu se pfidrzime a temperované distribuce zavedeme jako pod-
t¥idu distribuci, které je mozné testovat funkcemi ze Schwartzova prostoru. To ale
znamena, Ze pracujeme pouze s piipadem Q = RY.

Se Schwartzovym prostorem a s jeho zakladnimi vlastnostmi jsme se setkali
v kapitole vénované Fourierové transformaci (v Kapitole 21 étvrtého dilu skript).
Schwartztv prostor S(RY) jsme zavedli jako mnozinu véech funkci f € C(RY),
které splnuji

1flle.s == ||an5f||Loo(RN) < 00 pro vSechna «, 8 € (NO)N.

Konvergenci posloupnosti {fx}3, C S(RY) k funkei f ve Schwartzové prostoru
jsme zavedli podminkou

S(RY
I& (—> ) f — I fe = fllos R0 pro vSechna «, 8 € (NO)N.
Zaroven jsme si ukazali, ze pokles funkci ze Schwartzova prostoru charakteri-
zuji také podminky (kazdé z nich také odpovida jista charakterizace konvergence

na S(RY))

|||x\|“‘D3f||LW(RN) < oo  pro viechna a, 8 € (No)V,
11+ |I|)IQ‘DBfHLoo(]RN) < o0 pro viechna «, 3 € (Ng)™¥

11+ |x|2)‘a|Dﬁf||Loo(]RN) < o0 pro viechna a, 3 € (No)V.

Zejména posledni podminka nés inspiruje k pohledu na konvergenci v S(R?), ktery
pro nés bude vyhodny pfi urcovani fadu distribuce.
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Definice 24.1.1 (Prostor SP(RY)). Necht p € Ny. Pro kazdé ¢ € S(RY) defi-

nujme jeho normu

lollsp@yy == sup (14 [z*)?|D¢()].
zeRN
ac(No)V,|al<p

Déle definujme mnozinu

S (RY) = ),
kde uzévér bereme v prostoru C?(R") vzhledem k normé ¢ — ||| s»rn). Navic
pro {¢}72, C SP(RY) zavadime na prostoru SP(R”") konvergenci

SP(RY) def

v — 0 — llorllse@ay — 0
a
SP(RN) def SP(RM)
T — ek—¢ — 0

Poznamka 24.1.2. (i) Pro ¢ € S(RV) a kazdé p € N, p > 2 plati (piipady
p=0,1,2 jsou niZze vypsany explicitné)

lellsomny < lellsimyy < lellszmny < -+ < lellse@yy < llellspri@ny < -

S(RY) c SPH(RN) c SPRY) ¢ --- c SERY) ¢ SYRY) ¢ S%RY).

(ii) Pro posloupnost {172, C S(RY) je vyrok ¢y, S(&N) 0 ekvivalentni tomu, ze
pro kazdé p € Ny plati oy Sp(—R>N) 0.

Pomoci prostortt SP(RY) je mozné prostor S(RY) dokonce charakterizovat.
Tvrzeni 24.1.3 (O charakterizaci prostori SP(RY)). Pro kazdé p € Ny plati

|z] =00
%

SP(RY) = {p € CPRN): (1 + |z*)PDYp(x) 0 kdykoliv |o| < p}.

Dale plati
S®N) = (] SP®RN).
pENy

Diikaz. Dokazme mnozinovou inkluzi ,,C“ z prvni rovnosti. Necht ¢ € SP(RY) a

p N
posloupnost {¢;}32, C S(RY) spliuje oy s (—R> ) . Ke zvolenému ¢ > 0 proto

existuje ko € N takové, ze
(1 + |z|?)P| DY (z) — D¥p(x)| < € pro viechna z € RN k> kg a |a| < p.

Navic, protoze ¢r, € S(RY), plati pro viechna z € RY a |a| < p (nésledujici
odhad sice obecné neni stejnomérny v «, ale pracujeme jen s konecnym poctem
multiindext)

(L + |2[*)P[ D% pr, ()] <

< W(l + |z?)P T DYpp, (2)| <

L |z



