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25.2.1 Lineární parciální diferenciální rovnice 1. řádu

Definice 25.2.1 (Řešení lineární PDR 1. řádu). Nechť Ω ⊂ RN je oblast, (25.2.1)
je lineární PDR 1. řádu. Potom u ∈ C1(Ω) je řešením rovnice (25.2.1) v oblasti Ω,
jestliže pro všechna x ∈ Ω je splněno

N∑
i=1

ai(x)
∂u(x)

∂xi
= f(x).

Nejprve se budeme zabývat případem homogenní lineární PDR 1. řádu, tedy
rovnicí

N∑
i=1

ai
∂u

∂xi
= 0. (25.2.2)

Budeme předpokládat, že
∑N

i=1 |ai(x)| > 0 pro všechna x ∈ Ω, tedy na celé ote-
vřené množině, na které rovnici řešíme.

Definice 25.2.2 (Charakteristický systém, charakteristika). Systém ODR 1. řádu

dxi(t)

dt
= ai(x(t)), i = 1, 2, . . . , N, x ∈ Ω (25.2.3)

nazýváme charakteristickým systémem rovnice (25.2.2). Libovolné řešení φi ∈
C1((t1, t2)), i = 1, 2, . . . , N systému ODR (25.2.3) nazýváme charakteristikou rov-
nice (25.2.2).

Věta 25.2.3 (O ekvivalentní charakterizaci řešení lineární homogenní rovnice
1. řádu). Funkce ψ = ψ(x1, x2, . . . , xN ) je řešením rovnice (25.2.2) v otevřené
množině Ω ⊂ RN právě tehdy, když je ψ konstantní podél každé charakteristiky
rovnice (25.2.2).

Důkaz. „⇒ Nechť ψ splňuje

N∑
i=1

ai(x)
∂ψ(x)

∂xi
= 0 ∀x ∈ Ω.

Nechť {φ1(t), φ2(t), . . . , φN (t)}, t ∈ (t1, t2) je charakteristikou rovnice (25.2.2).
Potom

d

dt
ψ(φ1(t), φ2(t), . . . , φN (t)) =

N∑
i=1

∂ψ

∂xi
(φ1(t), φ2(t), . . . , φN (t))

dφi(t)

dt

=
N∑
i=1

∂ψ

∂xi
(φ1(t), φ2(t), . . . , φN (t))ai(φ1(t), φ2(t), . . . , φN (t)) = 0,

tedy ψ je konstantní podél každé charakteristiky.
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„⇐ Nechť je ψ konstantní podél každé charakteristiky. Zvolme libovolný
bod ξ ∈ Ω. Protože funkce {ai}Ni=1 jsou spojité v Ω, prochází bodem ξ ale-
spoň jedna charakteristika, odpovídající jistému intervalu (t1, t2) (což plyne z Pe-
anovy věty, tedy Věty 8.3.5 resp. 11.11.8). Fixujme jednu takovou charakteris-
tiku {(φ1(t), φ2(t), . . . , φN (t)) : t ∈ (t1, t2)} a bod τ ∈ (t1, t2) takový, že platí
(φ1(τ), φ2(τ), . . . , φN (τ)) = (ξ1, ξ2, . . . , ξN ). Protože ψ(φ1(t), φ2(t), . . . , φN (t)) je
konstantní na (t1, t2), platí

0 =
d

dt
ψ(φ1(t), φ2(t), . . . , φN (t))

=
N∑
i=1

∂ψ

∂xi
(φ1(t), φ2(t), . . . , φN (t))ai(φ1(t), φ2(t), . . . , φN (t)).

Volbou t := τ dostáváme, že rovnici (25.2.2) splňuje funkce ψ v bodě ξ ∈ Ω. Bod
ξ je ale libovolný bod množiny Ω, proto funkce ψ(x) řeší (25.2.2) v oblasti Ω.

Příklad 25.2.4. Hledejme řešení rovnice

ay
∂u

∂x
+ bx

∂u

∂y
= 0

na celém R2, a, b ∈ R jsou konstanty.
Charakteristický systém této rovnice má tvar

dx

dt
= ay,

dy

dt
= bx.

Pokud vynásobíme první rovnici bx a druhou ay a vztahy odečteme, dostáváme

d

dt

(
bx2 − ay2

)
= 0,

tedy
bx2 − ay2 = konst.

Řešením dané rovnice proto je

u(x, y) = U(bx2 − ay2),

kde U : R → R je funkce třídy C1(R).

Cvičení 25.2.5. Nalezněte řešení rovnice

cos y
∂u

∂x
+ sinx

∂u

∂y
= 0.

Příklad 25.2.6. (i) Hledejme řešení rovnice

∂u

∂x
+ x

∂u

∂y
= 0
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na celém R2 splňující u(0, y) = sin y pro y ∈ R. Tato úloha se nazývá Cauchyovou
úlohou pro PDR 1. řádu.
Charakteristický systém této rovnice je

dx

dt
= 1,

dy

dt
= x.

Dostáváme tedy

x = t+ x0, y =
1

2
t2 + x0t+ y0.

Hledáme tedy funkci, konstantní podél x = t + x0, y = 1
2 t

2 + x0t + y0. Takovou
funkcí je

u(x, y) = U
(
y − 1

2
x2

)
,

neboť y − 1
2x

2 = 1
2 t

2 + x0t + y0 − 1
2 (t + x0)

2 = y0 − 1
2x

2
0 = konst. Tento vztah

můžeme také odvodit podobně jako v předchozím příkladu. Vynásobíme-li první
rovnici x a odečteme-li od ní druhou rovnici, dostáváme

d

dt

(1
2
x2 − y

)
= 0,

tedy opět máme 1
2x

2 − y = konst. Protože má být u(0, y) = U(y) = sin y, je

u(x, y) = sin
(
y − 1

2
x2

)
, (x, y) ∈ R2.

(ii) Hledejme řešení rovnice
∂u

∂x
+ x

∂u

∂y
= 0

na celém R2 splňující u(x, 0) = g(x) pro x ∈ R.
Stejným postupem jako výše získáme

u(x, y) = U
(
y − 1

2
x2

)
= V (

√
x2 − 2y).

Protože má být u(x, 0) = g(x), máme

u(x, y) = g(
√

x2 − 2y). (25.2.4)

Tedy na množině {(x, y) : y > 0∧x ∈ (−
√
2y,

√
2y)} neumíme obecně nalézt řešení

pomocí vztahu (25.2.4), mimo tuto množinu je dáno vztahem (25.2.4), přičemž
musíme požadovat, aby funkce g byla sudá; máme totiž u(x, 0) = V (|x|) = g(|x|).

Abychom vyjasnili strukturu prostoru řešení, zobecníme pojem závislosti funk-
cí, který jsme používali při řešení lineárních obyčejných diferenciálních rovnic n-
tého řádu (Definice 8.5.3).
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Definice 25.2.7 (Závislost funkcí). (i) Funkce u1(x1, x2, . . . , xN ),
u2(x1, x2, . . . , xN ), . . . , uN (x1, x2, . . . , xN ) jsou závislé na množině O (množina O
je omezená otevřená), jestliže existuje funkce F (u1, u2, . . . , uN ) taková, že
(I) F (u1, u2, . . . , uN ) ∈ C1(RN )
(II) F není v žádné oblasti G ⊂ RN identicky rovná nule
(III) pro všechna x = (x1, x2, . . . , xN ) ∈ O je F (u1(x), u2(x), . . . , uN (x)) = 0.
(ii) Funkce u1(x1, x2, . . . , xN ), u2(x1, x2, . . . , xN ), . . . , uN (x1, x2, . . . , xN ) jsou zá-
vislé v oblasti Ω, pokud pro každou omezenou podoblast O takovou, že O ⊂ Ω,
platí, že u1(x1, x2, . . . , xN ), u2(x1, x2, . . . , xN ), . . . , uN (x1, x2, . . . , xN ) jsou závislé
v O.

Platí následující ekvivalentní charakterizace závislosti funkcí.

Věta 25.2.8 (Jacobiho kritérium závislosti funkcí). Nechť Ω ⊂ RN je otevřená,
ui ∈ C1(Ω), i = 1, 2, . . . , N . Potom u1(x), u2(x), . . . , uN (x) jsou závislé v Ω právě
tehdy, když pro všechna x ∈ Ω platí

Ju(x) = det




∂u1(x)
∂x1

∂u1(x)
∂x2

· · · ∂u1(x)
∂xN

∂u2(x)
∂x1

∂u2(x)
∂x2

· · · ∂u2(x)
∂xN

...
...

. . .
...

∂uN (x)
∂x1

∂uN (x)
∂x2

· · · ∂uN (x)
∂xN




= 0.

Důkaz. Důkaz je poměrně dlouhý a technicky náročný. Lze ho nalézt v [Ka, str.
302–309].

Pro případ, kdy je počet funkcí menší než počet proměnných, platí

Věta 25.2.9 (Kritérium nezávislosti funkcí pro menší počet funkcí). Nechť Ω ⊂
RN je otevřená, ui ∈ C1(Ω), i = 1, 2, . . . ,m, m ≤ N . Potom jsou funkce u1(x),
u2(x), . . . , um(x) jsou nezávislé v Ω, jestliže pro všechna x ∈ Ω platí, že hodnost
matice 



∂u1(x)
∂x1

∂u1(x)
∂x2

· · · ∂u1(x)
∂xN

∂u2(x)
∂x1

∂u2(x)
∂x2

· · · ∂u2(x)
∂xN

...
...

. . .
...

∂um(x)
∂x1

∂um(x)
∂x2

· · · ∂um(x)
∂xN




je rovna m.

Důkaz. Důkaz pro m = N plyne z předchozí věty, pro m < N je pak nepříliš
obtížným důsledkem této věty. Detaily lze nalézt opět v [Ka, str. 310].

Příklad 25.2.10. (i) Nechť Ω = R2, u1(x1, x2) = sinx1, u2(x1, x2) = cosx2.
Podle Věty 25.2.8 nejsou tyto funkce závislé v Ω (jsou tedy nezávislé), protože
Ju(x) = − cosx1 sinx2 a tento výraz není identicky nulový na žádné neprázdné


