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Věta 25.2.30 (O kompatibilitě slabého a klasického řešení Burgersovy rovnice).
(i) Pokud je u klasickým řešením úlohy (25.2.25), pak je též slabým řešením dle
Definice 25.2.29.
(ii) Pokud je u slabým řešením dle Definice 25.2.29 a u ∈ C1([0,∞)× R), pak je
u též klasickým řešením úlohy (25.2.25).

Důkaz. (i) Tato část plyne z odvození nad definicí slabého řešení, jen si stačí
uvědomit, že všechny integrály ve slabé formulaci jsou konečné.
(ii) Protože u je hladké dle předpokladů věty, lze integrovat „zpět per partes.
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(25.2.27)

Odsud dostáváme podle Lemmatu 21.3.5 (toto lemma jsme využívali při důkazu
Věty o inverzi Fourierovy transformace na L1(RN ), tedy Věty 21.3.6), že platí s.v.
na (0, T )× R
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Protože je funkce u spojitě diferencovatelná, rovnost platí na (0, T )×R. Pokud se
vrátíme k rovnosti (25.2.27), máme

∫

R
(u(0, x)− u0(x))φ(0, x) dx = 0

pro libovolné φ ∈ C1
0 ([0,∞) × R). Proto použitím stejného argumentu jako výše

je u(0, x) = u0(x) pro libovolné x ∈ R.

Slabé řešení je vhodným pojmem v situacích, kdy nemáme k dispozici klasické
řešení, což budeme demonstrovat v následujícím příkladě.

Příklad 25.2.31. Uvažujme tzv. Riemannův problém pro Burgersovu rovnici,
tedy úlohu
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a) u0(x) =

{
0 x < 0
1 x ≥ 0

b) u0(x) =

{
1 x < 0
0 x ≥ 0.

(25.2.28)

Řešení je konstantní na charakteristikách. Počáteční hodnota je buď 0 nebo 1.
Proto v případě, že počáteční hodnota je nulová, má charakteristika tvar

x = x0, t = s,

pokud je počáteční hodnota 1, pak má charakteristika tvar

x = s+ x0, t = s.
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To vede k následujícímu problému. V případě úlohy a) není řešení definované na
množině

S = {(t, x) ∈ [0,∞)× [0,∞) : t ≥ x}.

V případě úlohy b) množinou S procházejí dvě charakteristiky, není tedy jasné,
jak řešení na této množině definovat, situace je znázorněna na Obrázcích 25.1 a
25.2.
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Obrázek 25.1: Tvar charakteristik Riemannova problému pro Burgersovu rovnici
v případě a).
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Obrázek 25.2: Tvar charakteristik Riemannova problému pro Burgersovu rovnici
v případě b).

Zřejmě někde na této množině vzniká rázová vlna, tedy řešení bude nespo-
jité. Proto budeme muset pracovat se slabým řešením. Pokusme se postupovat
následovně. Pro jisté α > 0, které nalezneme níže, definujme množinu

Γ := {(t, x) ∈ [0,∞)× [0,∞) : t = αx}

a uvažujme charakteristiky jako na Obrázcích 25.3 a 25.4 níže.
Tedy řešení je po částech konstantní, v případě úlohy a) je řešení nulové na

množině {(t, x) ∈ [0,∞) × R : x < 0 ∨ x > 0, t > αx} a na množině {(t, x) ∈
[0,∞)× R : x > 0, t < αx} je řešení rovno 1, pro případ b) jsou hodnoty naopak.
Na množině Γ není třeba slabé řešení definovat, jde o podmnožinu R2 nulové


