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A. Measures and Measurable Functions

1. The Lebesgue Measure

In the history, people were engaged in the problem of measuring lenghts, areas
and volumes. In mathematical formulation the task was, for a given set A, to
determine its size (”measure”) λA. It was required that the volume of a cube or
the area of a rectangle or a circle should agree with the well-known formulae. It
was also clear by intuition that this measure should be positive and additive, i.e.
it should satisfy the equality

λ
⋃

Aj =
∑

λAj

provided {Aj} is a finite disjoint collection of sets. For a succesful development
of the theory a further condition was imposed: The above equality was claimed
to hold even for countable disjoint collections of sets. Moreover, the effort was
paid to assign a measure to as many sets as possible.

Now, we are going to show how to proceed on the real line. The same approach
will be used later in the Euclidean space R

n where the proofs will be given.

1.1. Outer Lebesgue Measure. For an arbitrary set A ⊂ R, define

λ∗A := inf{
∞∑

i=1

(bi − ai) :

∞⋃
i=1

(ai, bi) ⊃ A}.

The value λ∗A (which can also be +∞) is called the outer Lebesgue measure of a
set A.

1.2. Properties of the Outer Lebesgue Measure. One can see immediately
that λ∗A ≤ λ∗B if A ⊂ B and that the measure of a singleton is 0, and without
much effort it becomes clear that λ∗I is the length of I in case of I interval of any
type (see Exercise 1.6). Then it is relatively easy to prove that the outer Lebesgue
measure is translation invariant : If A ⊂ R and x ∈ R, then λ∗A = λ∗(x + A).
Another important property is the σ-subadditivity:

λ∗(

∞⋃
j=1

Aj) ≤
∞∑

j=1

λ∗Aj .

In mathematical terminology, the prefix σ usually relates to countable unions and δ to countable

intersections.

The question of whether λ∗ is an additive set function has a negative answer:
There are disjoint sets A, B with

λ∗(A ∪B) < λ∗A + λ∗B

(cf. 1.8), and we need to find a family of sets (as large as possible) on which the
measure λ∗ is additive. This task will be solved later in Chapter 4 in a much more
general case. Now we just briefly indicate one of its possible solutions in case of
the Lebesgue measure.
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1.3. Lebesgue Measurable Sets. Let A be a subset of a bounded interval I.
Defining the “inner measure” λ∗A = λ∗I − λ∗(I −A), it is natural to investigate
the collection of sets for which λ∗A = λ∗A (cf. Exercise 1.7). This leads to the
following definition.

We say that a set A ⊂ R is (Lebesgue) measurable if λ∗I = λ∗(A∩I)+λ∗(I\A)
for every bounded interval I ⊂ R. The collection of all measurable sets on
R will be denoted by M. Not every set is measurable as will be seen in 1.8.
The set function M 	→ λ∗M , M ∈ M is denoted by λ and called the Lebesgue

measure. Thus, on measurable sets, the set functions λ∗ and λ coincide but for
nonmeasurable ones only λ∗ is defined.

Another important property of the measure λ is contained in the following
theorem which is now presented without proof.

1.4. Theorem. (a) If M1, M2, . . . are elements of M, then also M1 \ M2,⋂
Mn and

⋃
Mn are elements of M. If, in addition, the sets Mn are pairwise

disjoint, then

λ
(⋃

n

Mn

)
=
∑

n

λMn.

(b) Intervals of any type are in M.

1.5. Remark. The ingenuity of Lebesgue’s approach to the measure consists in considering

the countable covers of a set A with intervals. If in the definition of λ∗A we consider only finite

covers, we get the notion of so-called Jordan-Peano content . In modern analysis this notion is

far from being as important as the Lebesgue measure.

1.6. Exercise. If I ⊂ R is an interval (of any type), show that λ∗I is its length.

Hint . It is sufficient to consider the case I = [a, b]. Clearly λ
∗[a, b] ≤ b − a (since [a, b] ⊂

(a − ε, b + ε)). Suppose
∞⋃

i=1

(ai, bi) ⊃ [a, b]. A compactness argument yields the existence of an

index n satisfying
n⋃

i=1

(ai, bi) ⊃ [a, b]. Using induction (with respect to n) it can be shown that

b− a ≤
n∑

i=1

(bi − ai).

1.7. Exercise. For every bounded set A ⊂ R, define

λ∗A := λI − λ
∗(I \A)

where I is a bounded interval containing A. Show that:

(a) the value of λ∗A does not depend on the choice of I;

(b) a bounded set A ⊂ R is measurable if and only if λ
∗
A = λ∗A;

(c) a set M ⊂ R is measurable if and only if its intersection with each bounded interval is

measurable.

In the next part of this chapter we introduce some significant sets on the real
line.

1.8. A Nonmeasurable Set. Now we prove the existence of a nonmeasurable subset of R

and consequently prove that the outer Lebesgue measure cannot be additive.

Set x ∼ y if x − y is a rational number. It is easy to see that ∼ is an equivalence relation

on R. Therefore R splits into an uncountable collection of pairwise disjoint classes. A set V

belongs to this collection if and only if V = x + Q for some x ∈ R. By the axiom of choice,
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there exists a set E ⊂ (0, 1) that shares exactly one point with each set V ∈ . We show that

E is not in M.

Let {qn} be a sequence containing all rational numbers from the interval (−1, +1). It is not

very difficult to show that the sets En := qn + E are pairwise disjoint and that

(0, 1) ⊂
⋃
n

En ⊂ (−1, 2).

Assuming that E ∈ M, then also En ∈ M and Theorem 1.4 gives λ
⋃
n

En =
∑
n

λEn. Distin-

guishing two cases λE = 0 and λE > 0 we easily obtain the contradiction.

1.9. Remarks. 1. The proof of the existence of a nonmeasurable set is not a constructive

one (it uses the axiom of choice for an uncountable collection of sets). We return to the topic

of nonmeasurable sets in Notes 1.22.

2. By a simple argument, an even stronger proposition can be proved: Any measurable set

M ⊂ R of a positive measure contains a nonmeasurable subset. It is sufficient to realize that

M =
⋃

q∈QM ∩ (E + q) where E is the nonmeasurable set from 1.8 and that any measurable

subset of E is of zero (Lebesgue) measure.

3. Van Vleck [1908] “constructed” a set E ⊂ [0, 1] for which λ∗E = 1 and λ∗E = 0.

1.10. Exercise. Show that every countable set S is of measure zero.

Hint . Consider covers
∞⋃

j=1

(rj − ε2−j , rj + ε2−j) where {rj} is a sequence of all elements of the

set S. The assertion also follows from Theorem 1.4 if you realize that singletons have measure

zero.

1.11. Examples of Sets of Measure Zero. (a) The set Q of all rational numbers is

countable, thus by Exercise 1.10 it has Lebesgue measure zero.

(b) It can be seen from the hint to the exercise that for every k ∈ N there is an open set

Gk such that Q ⊂ Gk and λ∗Gk ≤ 1/k. The set
∞⋂

k=1

Gk has also Lebesgue measure zero, it is

dense and uncountable (even residual).

1.12. Cantor Ternary Set. Consider the sequence { n} of finite collections of intervals

defined in the following way: 0 = {[0, 1]}, 1 = {[0,
1

3
], [ 2
3
, 1]}. In each step we construct

n from n−1 as the collection of all closed intervals which are the left or right third of an

interval from the collection n−1 (the middle thirds are omitted). Then n is a collection

of 2n disjoint closed intervals, each of them of length 3−n. Let Kn denote the union of the

collection n. The Cantor ternary set1 C is defined as
⋂
n

Kn. It is not difficult to verify that

C consists precisely of points of the form
∞∑

i=1

ai3
−i where each ai is 0 or 2. Roughly speaking,

in the Cantor set there are exactly those points of the interval [0, 1] whose ternary expansions

do not contain the digit 1. The Cantor set has the following properties:

(a) C is a compact set without isolated points;

(b) C is a nowhere dense (and totally disconnected) set;

(c) C is an uncountable set;

(d) the Lebesgue measure of C is zero.

1.13 Discontinua of a Positive Measure. If we construct a set D ⊂ [0, 1] like the Cantor

set except that we always omit intervals of length ε3−n where ε ∈ (0, 1) (note that their centres

are not the same as those in the construction of the Cantor set), we get a closed nowhere dense

set, for which λD = 1 − ε. Sets having this property are called the discontinua of a positive
measure. Another construction: If G is an open subset of the interval (0, 1), containing all

rational points of this interval and λG = ε < 1 then [0, 1]\G is a discontinuum of measure 1−ε.

1sometimes also called the Cantor discontinuum
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1.14. Exercise. Prove that there exists a non-Borel subset of the Cantor set and realize that

this set is Lebesgue measurable.

Hint . The cardinality argument shows that the set of all Borel subsets of the Cantor set has

cardinality of the continuum while the set of all its subsets has greater cardinality.

Instead of this, the following idea can be used. Define

κ(t) := inf{x ∈ [0, 1] : f(x) = t}

where f is the Cantor singular function from 23.1. Show that κ is increasing on the interval [0, 1],

and therefore it is a Borel function. Suppose E is a nonmeasurable subset of [0, 1], B := κ(E).

Then B (as a subset of the Cantor set) is a measurable set. But since κ−1(B) = E (and κ is a

Borel function), B cannot be a Borel set.

1.15. Lebesgue Measure on R
n. In the same way as for R, we introduce

the Lebesgue measure on R
n. Recall that by an interval in R

n we understand
an arbitrary Cartesian product of n one-dimensional intervals. If I := (a1, b1) ×
· · · × (an, bn) is an open interval, we define its volume as

vol I = (b1 − a1) · . . . · (bn − an).

In the same way we define vol I for intervals of other types. Given an arbitrary
set A ⊂ R

n, define the outer Lebesgue measure of A as the quantity

λ∗A = inf{
∞∑

k=1

vol Ik :
∞⋃

k=1

Ik ⊃ A, Ik is an open interval}.

We say that a set A ⊂ R
n is measurable if λ∗T = λ∗(A ∩ T ) + λ∗(T \ A) for

every set T ⊂ R
n. (By analogy with the one-dimensional case we should require

this equality to hold just for bounded intervals T . We have chosen the present
definition in order to apply the general approach of Chapter 4. Soon we show
that there is no difference between these two definitions.) The symbol M again
denotes the collection of all measurable subsets of R

n. For M ∈M we denote by
λM := λ∗M the n-dimensional Lebesgue measure of a set M .

1.16. Theorem. If {Aj} is a sequence of (arbitrary) sets of R
n
, then

λ∗

( ∞⋃
j=1

Aj

)
≤

∞∑
j=1

λ∗Aj .

Proof. The assertion follows from Theorem 4.3.

1.17. Theorem. If M1, M2, . . . are elements of M, then also M1 \M2,
⋂

Mn

and
⋃

Mn are elements of M. If, in addition, the sets Mn are pairwise disjoint,

then

λ
(⋃

n

Mn

)
=
∑

n

λMn.

Proof. The assertion follows from general Theorem 4.5.

Compare the following theorem with Exercise 1.6.
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1.18. Theorem. If I ⊂ R
n

is a bounded interval, I ⊂
⋃
j

Qj where {Qj} is a

sequence of open intervals, then

vol I ≤
∑

j

volQj .

Thus the n-dimensional Lebesgue measure λ∗I is equal to the volume vol I.

Proof. Suppose J is a compact interval contained in I. There exists a p such that
the intervals {Q1, . . . , Qp} cover J . The interval J can be now divided into a
finite number of non-overlapping n-dimensional intervals {Ji} (distinct elements
of {Ji} have disjoint interiors) in such a way that the interior of each interval Ji

is contained in some of the intervals Qj. Then

volJ =
∑

i

volJi ≤

p∑
j=1

volQj ≤
∞∑

j=1

volQj .

Since the difference vol I − volJ can be arbitrarily small, the assertion follows.

1.19. Theorem. (a) Any open subset of R
n

is measurable.

(b) If λ∗A = 0, then A is measurable.

Proof. The proof of part (b) is obvious; we will prove (a). First we prove that each
interval H which is a halfspace (e.g. of the form (−∞, c)×R

n−1) is measurable.
Choose a “test” set T , λ∗T < ∞, and ε > 0. There exist open intervals {Qj}
with ⋃

j

Qj ⊃ T and
∑

j

vol Ij < λ∗T + ε.

Now find open intervals Ij and Jj such that

Ij ∪ Jj = Qj , Qj ∩H ⊂ Ij , Qj \H ⊂ Jj and λ∗Ij + λ∗Jj < λ∗Qj + ε2−j.

Then
λ∗(T ∩ I) + λ∗(T \ I) ≤

∑
j

vol Ij +
∑

j

volJj ≤ λ∗T + ε.

We proved the measurability of all intervals H of the form of a halfspace. Now,
each open set can be expressed as a countable union of intervals and each interval
is a finite intersection of intervals which are halfspaces.

1.20. Theorem. If A ⊂ R
n
, then

λ∗A = inf {λG : G open, G ⊃ A}.

Proof. One inequality follows from the monotonicity of λ∗. Now if λ∗A <∞ and
ε > 0, then there exist open intervals Ij ⊂ R

n such that

A ⊂
⋃
j

Ij and λ
⋃
j

Ij ≤
∑

j

vol Ij < λ∗A + ε.

The reader should compare the following theorem and Exercise 15.19.
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1.21. Theorem. Given a set M ⊂ R
n
, the following are equivalent:

(i) M is measurable;

(ii) for every bounded interval I, λ∗I = λ∗(I ∩M) + λ∗(I \M);
(iii) for every ε > 0 there exists an open set G ⊃M with λ∗(G \M) < ε;
(iv) there exists a Gδ-set D ⊃ M such that λ∗(D \M) = 0;
(v) there exist an Fσ-set Bi and a Gδ-set Be such that Bi ⊂ M ⊂ Be and

λ∗(Be \Bi) = 0.

Proof. The implication (i) =⇒ (ii) is trivial. Assuming (ii), fix ε > 0 and denote
Ik = (−k, k)n. By Theorem 1.20 we can find open sets Gk and Hk such that
Ik∩M ⊂ Gk, Ik\M ⊂ Hk, λGk ≤ λ∗(Ik∩M)+2−kε and λHk ≤ λ∗(Ik\M)+2−kε.
We can assume that Gk and Hk are subsets of Ik. Then we have Gk\M ⊂ Gk∩Hk.
Using (ii) and the measurability of open sets we obtain

λIk+λ(Gk∩Hk) = λGk+λHk ≤ λ∗(Ik∩M)+λ∗(Ik\M)+2−k+1ε ≤ λIk+2−k+1ε.

Set G =
⋃
k

Gk. Then

λ∗(G \M) ≤
∞∑

k=1

λ(Gk ∩Hk) ≤ 2ε

so that (iii) holds. That (iii) implies (iv) is evident. It is not very difficult to
prove the implication (iv) =⇒ (v). If M satisfies (v), then M = Bi ∪ (M \ Bi)
where the sets Bi and M \ Bi are measurable by Theorem 1.19 (each one for a
different reason), so that (v) =⇒ (i).

1.22. Notes. Originally, H. Lebesgue defined the outer measure on the real line using

countable covers formed by intervals, exactly as explained in the text. He defined measurability

as in Exercise 1.7.

At the end of the last century, various attempts to define the length or area of geometrical

figures appear; in the works of G.Peano [1887] and C. Jordan [1892] even the “measures” of

more complicated sets are considered.

The existence of a Lebesgue nonmeasurable set is very closely connected to the axiom of

choice (for uncountable collections of sets) and the assertion that such sets exist was first proved

by G. Vitali [*1905]. Solovay’s result [1970] says that there exist models of the set theory (of

course not satisfying the axiom of choice) in which every subset of real numbers is Lebesgue mea-

surable. The existence of a nonmeasurable set can be proved (assuming various set conditions)

in other ways as well. Constructions of Bernstein’s sets (still assuming the axiom of choice) as

examples of nonmeasurable sets are also interesting. Another construction of a nonmeasurable

set (the axiom of choice again) based on results of the graph theory comes from R. Thomas

[1985]. Using nonstandard methods, it is possible to prove the existence of a nonmeasurable set

assuming the existence of ultrafilters (a weaker form of the axiom of choice; cf. M.Davis [*1977]).

Recently, M.Foreman and F.Wehrung [1991] proved that the existence of a nonmeasurable set

follows from the Hahn-Banach Theorem (which is again a weaker assumption than the axiom

of choice).

Let us note that the Lebesgue measure can be extended to a “translation invariant” mea-

sure defined on a wider σ-algebra than is the collection of all Lebesgue measurable sets. The

construction can be found e.g. in S. Kakutani and J.C.Oxtoby [1950]. However, the Lebesgue

measure cannot be extended in a reasonable way to the collection of all subsets of Rn.

It is interesting that in R or R2 there exist finitely additive extensions of the Lebesgue

measure to the collection of all subsets which can also be invariant with respect to translations




